
Work in Progress: The RICA Project: Rich, Immediate
Critique of Antipatterns in Student Code

Leo C. Ureel II
ureel@mtu.edu

Laura E. Brown
lebrown@mtu.edu

Jon Sticklen
stiklen@mtu.edu

Michelle Jarvie-Eggart
mejarvie@mtu.edu

Mary Benjamin
mbenjami@mtu.edu

Michigan Technological University
Houghton, MI 49931

ABSTRACT
Rich, relevant, and immediate student feedback is a core in-
gredient supporting effective student learning. Feedback is
particularly important for introductory computing courses
where novice programmers are still learning the basic syn-
tax and semantics of a programming language. Our project
is aimed at detecting poor solutions to common problems,
termed antipatterns, in student code and providing feedback
that guides the student to better solutions. This paper dis-
cusses the first year of the project, specifically, the develop-
ment of a Code Critiquer to detect antipatterns in student
code and generate appropriate feedback. This important
first step sets-up the project to advance knowledge about
novice antipatterns and their detection. The use of these
antipatterns and code critiquers in future classroom inter-
ventions will help the project improve our understanding of
student learning, retention, and self-efficacy.

Keywords
Antipatterns, MATLAB, Novice Programming, Code Criti-
quer, Engineering Fundamentals, First Year Experience

1. THE RICA PROJECT
Large introductory courses that introduce programming con-
cepts and skills are challenging to both students and faculty.
For students, there is an enormous time spent learning syn-
tax and understanding semantics of a particular program-
ming language while also learning general problem solving
skills and paradigms. There is a need for immediate and
repeated feedback when learning these fundamental skills.
However, messages provided by compilers or run-time inter-
preters are often opaque and are geared towards experts, not
novice programmers, where the experts have a clear under-
standing of the language and a deep model of what comprises
a program and how a program is developed. For instruc-

tors, the ability to provide timely and rich feedback is taxed
by the onerous time commitment required and compounded
with large course sizes.

The RICA Project builds on the prior work in code cri-
tiquers by Qiu and Riesbeck [12], Brown and Pastel [5],
Ureel and Wallace [15], and Walther [23]. Code critiquers
analyze student code and provide rich and targeted feed-
back. Ureel and Wallace used a code critiquer to support
learning Java programming in first-year computer science
courses [16]. We aim to develop a MATLAB Critic, simi-
lar to Walther’s MATLAB-TA, to assist students learning
MATLAB programming in first-year engineering. The code
critiquer used in this project, MATLAB Critic, is designed to
detect the common mistakes, or antipatterns, that students
make while learning MATLAB programming. By defining
antipatterns, student and faculty can then converse using
this vocabulary. Our project is centered on engaging and
supporting student learning of programming competencies.

The project’s primary goal is to determine if using a Code
Critiquer supports effective student learning at scale. We are
investigating this problem in a first-year engineering (FYE)
course with approximately 1,000 students. We pose the fol-
lowing research questions to address this goal:

• RQ 1: Will the use of a Code Critiquer by first-year
engineering students improve their computing skills?

• RQ 2: Will the use of a Code Critiquer by first-year
engineering students improve student self-efficacy?

• RQ 3: The introduction of antipatterns to the cur-
riculum will enable students and instructors to adapt
a common pattern language. Will the common lan-
guage improve student’s skills in computational rea-
soning and communication about problems and code?

In the first year of the project we are focusing on identify-
ing Novice Antipatterns and developing Code Critiquer soft-
ware to provide students with feedback when antipatterns
are detected in their code. Novice antipatterns are com-
mon code structures, found in student programs, that cause
more problems than they solve. Novice antipatterns repre-

sent the kinds of coding mistakes that expert coders would
never make.

Previous work identified over 200 antipatterns in Java [17].
Our goal during the first year of the project is to identify
antipatterns in MATLAB and to further understanding of
antipatterns generally. In this research, we will identify
novice antipatterns observed in first-year engineering stu-
dents’ code. By arranging these antipatterns in a taxon-
omy, we can name common mistakes, and create a vocabu-
lary through which both instructors and students can better
discuss and address problems in programs.

If, as we hypothesize, many of these novice antipatterns
transcend programming language, then we will have com-
piled a rich, descriptive language for communicating with
novices about their code and the qualities of programming
– both good and bad.

Additionally, within FYE programs, instructors are typi-
cally engineers, who may have taken only one or two pro-
gramming courses within their undergraduate work. Thus,
the faculty teaching young engineers programming skills of-
ten never progress much beyond a novice programming level
themselves. A taxonomy of antipatterns provides these in-
structors with essential scaffolding for their instruction, and
will advance their own reflection upon common student er-
rors and effective teaching methods in response.

In higher educational environments with increasingly larger
class sizes, the code critiquer can provide essential feedback
that may be missing within the large class format.

2. NOVICE ANTIPATTERNS
In the classroom instructors will, based on experience, iden-
tify common structures in student code and call them out.
“Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core
of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing
it the same way twice” [1]. In this way, the code patterns
students learn in a course form a kind of Pattern Language
used to communicate efficiently on a level between verbose,
plain English and terse computer code.

Instructor feedback is quite different from what a compiler
tells a student. When analyzing student code, an instructor
looks for Novice Antipatterns. Novice antipatterns are a kind
of code pattern: recurring code snippets that novices use to
solve problems; however, these antipatterns result in errors,
bugs, and inefficient code. By defining novice antipatterns,
we create a rich vocabulary for communicating about pro-
gramming mistakes and what constitutes poorly designed
code (and, conversely, what constitutes good code).

Novice antipatterns represent the kinds of mistakes that ex-
perts do not make. Consequently, professional tools often
do not provide good feedback on these kinds of mistakes.
An example of a common antipattern observed in beginning
programming courses is the Empty Loop Antipattern (Fig-
ure 1).

After learning looping constructs, a student will sometimes

Figure 1: Empty Loop Antipattern in MATLAB

A = [3 6 9 4 1];
% Loop serves no purpose.
for i = 1:length(A)

end

introduce an empty loop to their code simply because “we
just covered loops so they must be important!” An instruc-
tor can easily spot the empty loop and suggest to the student
that it might not be needed as it contributes nothing to their
solution, but could cause confusion later when the program
is being debugged or modified. We have seen this antipat-
tern in introductory courses using other languages, such as
Java and Python.

Examination of student code has helped us identify 200+
Java code antipatterns, which can be detected automati-
cally. For example [17]:

• Misplaced Code: Inserting good code outside of any
method or other appropriate enclosing structure. This
will stop the compilation process, but the resulting er-
ror messages do not produce meaningful feedback that
would assist a novice coder.

• Pseudo-Implementation: Students implement the meth-
ods called for by a Java interface, but neglect to use
the reserved word implements in the class definition,
thereby failing to enforce the contract of the interface
type.

• Localized Instance Variable: Students declare an in-
stance variable but only use it as if it were a local
variable in a single method.

• Repeated Resource Instantiation: A common program-
ming pattern is to instantiate a single resource (e.g., an
input or output stream) and uses that resource contin-
ually through execution. But student misunderstand-
ings may lead to code that inadvertently instantiates
multiple copies of the resource.

3. CODE CRITIQUERS
Like an instructor, a Code Critiquer analyzes student pro-
grams looking for Novice Antipatterns and responds with
highly interactive and targeted feedback [2, 12, 8, 20, 9].
While approaches vary, these systems tend to make strong
use of the instructor’s domain knowledge to identify design
issues and formulate meaningful responses (see Figure 2).

This makes them well-suited for providing novices with the
kinds of feedback that an instructor might give in a class-
room setting. For example, in Pseudo-Implementation (Fig-
ure 3), the student’s code will compile and may execute
without error. However, the instructor can configure the
Java Critic to identify when the student has implemented
code directly instead of using inheritance. The Java Critic
can then provide the student with advice to improve their
solution.

Critiquers are similar to autograders, but they focus on pro-
viding highly interactive and targeted feedback to student
programmers [2]. While these systems often perform testing,
they make strong use of the instructor’s domain knowledge
to identify patterns and formulate meaningful responses.
This makes them well-suited for providing novices with the
kinds of feedback we are attempting to emulate.

Figure 2: Information flow in a Code Critiquer.

Figure 3: Example of a Java code critique.

public interface ReverseInterface {
public String reverse(String s);

}

// Implements ReverseInterface
public class Reverse {

// Method required by ReverseInterface
public String reverse(s) {

if (s.isEmpty()) return s;
return reverse(s.substr(1)) + s.charAt(0);

}
}

Critique: The assignment required you to implement
the ReverseInterface interface. However, your class
Reverse is not declared to implement the interface
with the implements clause. This is important if
your code is to work with other classes that expect
your class to use the interface. Without it, your code
will not compile into a larger system.

3.1 Related Work
Here we briefly describe some related systems before expand-
ing on two systems, WebTA and MATLAB-TA, that we will
be extending in our work.

Java Critiquer [12] provides individualized feedback and just-
in-time learning opportunities to students. It performs static
assessment of programming style, programming errors, and
design by using regular expressions to match snippets of
code with trigger patterns in instructor created rules. Stu-
dents use the tool iteratively to improve their code before
submission.

JUG [5, 6] provides students with fast, automated feedback.
JUG (JUnit Generation) scripts to generate unit test cases
and time complexity tests, which are executed to produce
immediate student feedback. JUG is used as a support tool
for graders, providing unit tests and reports for each student,

but stopping short of automatically assigning a grade. JUG
performs dynamic assessment of functionality through gen-
erated JUnit testing and efficiency through measurements
of execution time.

Test My Code (TMC) [21] is an assessment system that en-
ables instructors to build scaffolding and automated instructor-
initiated feedback into programming exercises. TMC is in-
tegrated into the student’s programming environment and
provides tasks for the student to work on. The tool works
within an environment of high instructor-student interac-
tion, providing the ability for instructors to iteratively and
precisely identify points of critique within student code.

JDeodorant [9] is an Eclipse plugin that detects several clas-
sic code smells [10] in source code, including Feature Envy,
Type/State Checking, Long Method, God Class and Dupli-
cated Code. JDeodorant is targeted for experienced pro-
grammers rather than novices.

3.2 WebTA
WebTA is platform for developing and testing our Code Cri-
tiquer developed by Ureel [18]. WebTA is a federated archi-
tecture for critiquing code in the Canvas LMS [16, 19, 17].

WebTA has been used as a Java Critiquer in CS1, CS2,
and CS3 courses since 2014. The system has been used
by 1,421 students in 27 course instances. These students
made 64,964 submissions to 119 assignments [17]. WebTA
includes a library of 200+ Java-based novice antipatterns.
However, this library was grown organically over time and
lacks a rigorous system of classification.

WebTA Architecture: WebTA utilizes a federated architec-
ture with a Grails-based Web Site and LTI Module com-
prising a front-end that handles all communication with the
student through the Canvas LMS (see Figure 4) [18]. Critic
modules are their own application. Inter-module communi-
cation issues are resolved through the database.

Figure 4: Integrated WebTA Critiquer System with Critic
Colony Architecture

3.3 MATLAB-TA
A prototype MATLAB Critquer (MATLAB-TA), developed
by Walther [22, 23], analyzes a student’s MATLAB code
providing error and style guidance and feedback. Similar

to WebTA, the MATLAB Critiquer compiles, tests, and
analyzes code looking for antipatterns. The critiquer uses
the MATLAB Java API; connecting to the MATLAB En-
gine that parses and executes student code submissions [11].
When an antipattern is detected, the critic generates a cri-
tique for the student. The critique covers code structure,
shakedown test results, and programming style in a manner
appropriate for novice coders.

Some key features of MATLAB-TA include:

1. MATLAB-TA provides feedback on syntax, runtime
errors, requirements compliance via testing, and static
analysis of code structures and programming style.

2. MATLAB-TA does not require configuration or test
creation to provide feedback to students. Any code
submitted will be analyzed for the presence of novice
antipatterns in the Antipattern Library. This enables
instructors to adopt MATLAB-TA immediately with
no extra effort or setup.

4. SETTING: FIRST-YEAR ENGINEERING
The context of the project is a First-Year Engineering Pro-
gram (FYEP) with an enrollment of approximately 1,000
students. FYEP is a common first-year engineering experi-
ence taken by all first-year students in the College of Engi-
neering, where students are taught programming in MAT-
LAB.

All calculus-ready students begin their two course first-year
engineering sequence with the Engineering Analysis and Prob-
lem Solving course. This course provides students with an
introduction to the engineering profession and to its var-
ious disciplines. It focuses on developing problem-solving
skills and computational skills through introductory MAT-
LAB programming. The course is taught in a flipped class
format, where students watch recorded videos, read the text-
book, and complete some preparatory assignments prior to
class. Within class, students work on teams to apply the en-
gineering problem-solving method to “real-world” problems
through active, collaborative work.

Each studio section of 100-120 is composed of five LEAP
sections of 20-24 students each. Each LEAP section has its
own dedicated undergraduate TA, referred to as LEAP lead-
ers (LEarning with Academic Partners). Within each week,
students attend two 2-hour studio sessions for active learn-
ing with their large class of all 5 LEAP sections plus their
entire teaching team (head instructor plus five LEAP lead-
ers). Students also attend one weekly 1-hour LEAP session
with only their section of 20-24 students and their LEAP
leader. These sessions are led by the undergraduate TAs to
reinforce learning the material covered in class during the
week.

5. YEAR 1 OF THE RICA PROJECT
The RICA project’s primary focus is on the development
and implementation of a robust version of the MATLAB-
TA prototype in WebTA and it’s integration into the FYEP
ENG1101 curricula to address our three research questions.

5.1 Detecting Antipatterns
Detecting antipatterns can be challenging for humans and
computers alike. A problem is distinguishing a good solu-
tion from a bad one. Because bad solutions often manifest
as bugs in the code, techniques such as debugging and test-
ing are often used. However, because antipatterns are often
subtle and some bugs are difficult to reproduce or test, dif-
ferent approaches are used in the literature. We currently
use an ensemble of static and dynamic analysis techniques
for detecting antipatterns. In future work, we are planning
to extend our ensemble of methods to include the use of
machine learning to detect antipatterns.

Static Analysis examines the program text. We use Reg-
ular Expression Matching, a form of static analysis where
antipatterns are described using regular expressions. These
regular expressions are matched against the program source
code. A positive match indicates the presence of the an-
tipattern in the targeted code [17, 19] Another form of static
analysis that we utilize is Abstract Syntax Tree Traversal [17,
19] Antipatterns can be described as a arrangement of nodes
in a syntax tree. Rules can be used to traverse the abstract
syntax tree searching for the specified substructure. If the
described arrangement of nodes is found, the antipattern has
been detected.

Dynamic Analysis examines the properties of a program dur-
ing execution [3]. Two types of dynamic analysis that we
use for antipattern detection are Unit Testing and Model
Testing. Unit testing is a common practice where program-
mers test of the smallest specified units of code or groups
of related units in a software system [13]. In model testing,
an executable model of the software system’s behaviors and
properties is constructed. The model is then systematically
probed to find defects in the system [4].

5.2 Development of the MATLAB Code Critic
The development of the code critiquer builds on previous
work by Qiu and Riesbeck [12], Brown and Pastel [5], Ureel
and Wallace [15], and Walther [23].

• We have moved away from the proprietary MATLAB
Java API that was used by Walther to perform syntax
checking and runtime testing. Instead, we have im-
plemented a parser and Abstract Syntax Tree (AST)
based on the GNU Octave Project [7] Developing out
own parser and AST results in lower memory require-
ments, faster performance, and opens up avenues for
further customization.

• We have extended the library of regular expressions
used by Walther. We added 64 new regular expres-
sions to explain MATLAB syntax errors and police
coding style. For example, The code in Figure 5 con-
tains a tiny mistake where the student mistyped the
built-in command disp with a leading capital letter.
This produces a particularly unhelpful (especially to
novices) error message: “Undefined function or vari-
able ‘Disp”’. We turn that around with the feedback,
“You made a call to disp in line # but didn’t get the
capitalization correct.”

Initial development of our MATLAB Critic will continue
through the Fall semester 2022. Using experience reports
from the instructional staff (faculty and students), the sys-
tem will be continuously updated and refined thereafter, for
the life of the project.

5.3 The MATLAB Antipattern Database
Part of the RICA Project is to develop a taxonomy of novice
antipatterns and to determine the extent of overlap between
the taxonomies used to critique Java vs MATLAB code. Our
hypothesis being that there will be a high degree of overlap
between the types of mistakes novices make in the code of
any language.

Our MATLAB Critic is designed to provide students with
immediate feedback on common syntax errors, shakedown
testing, and programming style. We detect antipatterns in
the structure of the student code to trigger advice.

We are mining for antipatterns to store in our database in
three ways:

1. First, we are mining student code submitted to the
Canvas LMS during the 2021-2022 academic school
year. This has helped us identify several code antipat-
terns, which we can then detect automatically and pro-
vide appropriate just-in-time feedback to students.

2. Second, we are mining the WebTA Java Antipattern
Library. This library of over 200 antipattern defini-
tion contains many antipatterns that may be applica-
ble across language contexts (for example, Floating-
Point Comparison without Tolerance). We want to
find the antipatterns that apply equally in the Java
context as in the MATLAB context for teaching be-
ginning students.

3. We are compiling a set of guidelines or reading tech-
niques, similar to Travassis, et al. [14], for the purpose
of aiding instructors in manually identifying antipat-
terns.

The examples given here are derived from actual student
submissions, slightly modified for brevity.

5.3.1 Capitalization Mistakes
Beginning students spend much of their time coming to grips
with the syntax of MATLAB. There are a number of ways to
detect the common syntax mistakes made by novices; they
can be detected by the parser, by static textual analysis, or
by matching the MATLAB generated errors.

One example of a common syntax error is the mistaken cap-
italization of built-in MATLAB functions. Figure 5 shows a
function containing an improperly capitalized call to disp.
This produces an unfortunate MATLAB error that confuses
novices, ”Undefined function or variable”. Our MATLAB
Critic can detect this situation and provide the student with
better feedback.

5.3.2 Floating-point Loop Threshold

Figure 5: MATLAB identifier mispelled with incorrect case.

function badcase(inputArg1,inputArg2)
Disp("Hello")

end

MATLAB ERROR:

Critiquer Feedback:
You made a call to disp in line 2 of badcase.m, but
didn’t get the capitalization correct. Almost all built-
in MATLAB functions are named using all lowercase
letters.

Students often forget that the sets of real numbers and
floating-point numbers are not equivalent. This causes prob-
lems when students perform comparisons using floating-point
numbers. For example, a loop using a floating-point termi-
nating condition (see Figure 6) might result in unexpected
behavior; (1) loop may fail to terminate, (2) Loop may not
perform as many iterations as expected (perhaps more or
less).

Figure 6: Code using a floating-point loop threshold.

total = 0.0;
threshold = 0.3;
while total <= threshold

disp(total);
total = total + 0.1;

end

Critiquer Feedback:
You used a floating-point comparison as the end
condition for a loop. This can cause your loop to
fall short of the number of expected iterations or
it can result in an infinite loop. To mitigate this
problem, check that the source value is within
some tolerance range of the terminating value, i.e.
(total − threshold) ≤ tolerance

To mitigate this antipattern, students should implement the
corresponding positive code pattern, Floating-point Loop
with Tolerance, which is illustrated in Figure 7. When loop
terminating condition involves floating-point values, provide
a tolerance value for comparison. Our MATLAB Critic can
also detect use of this positive pattern and provide positive
feedback.

Figure 7: Code using a floating-point loop tolerance.

total = 0.0;
threshold = 0.3;
tolerance = 1E-15;
while (total - threshold) <= tolerance

disp(total);
total = total + 0.1;

end

An interesting aspect of this antipattern is that it is a special
case of a more abstract antipattern: Direct Floating-point
Comparison because we see similar antipatterns in any code
structures that might utilize floating-point comparisons. For
example in if statements,

if total <= threshold

versus

if (total - threshold) <= tolerance}

Furthermore, this antipattern appears to be a language inde-
pendent antipattern appearing in any language that allows
floating-point comparisons.

5.3.3 Misuse of the rand Command
Suppose the instructor wants the student to generate a ran-
dom number in range [0.0, 100.0). The instructor wants stu-
dents to use a construct such as:

r = rand * 100.0 % r in range [0.0, 100.0)

However students might try

r = rand(100) % r is a 100 x 100 matrix

Here an instructor can configure the MATLAB Critic to
check for this antipattern for the specific assignment where
the call to rand could“unexpectedly”return a matrix instead
of the expected floating-point result.

5.3.4 Redefinition of the Complex Number i or j

Here is a MATLAB specific antipattern. In MATLAB both i
and j are built-in complex numbers that represent the imagi-
nary number sqrt(-1). MATLAB allows these identifiers to
be used as variable names. However, they are still shadowed
by their complex definitions and can be used as imaginary
numbers resulting in confusing code.

Students most at risk of using this antipattern are those with
previous coding experience who are used to using variables
named i or j.

Detection of this antipattern in student code could also lead
to a discussion of descriptive variable names and the avoid-
ance of single character variable names where not mathe-
matically motivated.

6. FUTURE WORK
Here, we have described some of the novice MATLAB an-
tipatterns we have identified. Some are relatively easy to
detect (for example, style guideline violations), while others
require more subtle analysis or are conceptually tied to a
particular language, context or assignment. These antipat-
terns do not represent the kinds of mistakes that expert

Figure 8: Redefining the Complex Number i.

i = 42;
disp(i)
disp(2i)
disp(2*i)
disp(2+2i)
disp(2i+2i)

MATLAB OUTPUT:

42

0.0000 + 2.0000i

84

2.0000 + 2.0000i

0.0000 + 4.0000i

programmers make. This may explain why they are not
often found in professional or academic works. However in-
structors of intro-level programming courses, aware of the
mistakes beginning students might make, can provide feed-
back through our MATLAB Critic that is more targeted the
students’ needs.

We will continue and expand our mining of submission data
from the first year engineering courses in the Canvas LMS.
A long term goals is to support instructors by, as much as
possible, automate the process of identifying the novice an-
tipatterns that need to be detected when examining student
code. Apart from this data mining challenge, the concept of
early programming antipatterns is of general interest.

Once the MATLAB Critic is ready for testing in the class-
room, we plan to evaluate the ability of the MATLAB Critic
to detect antipatterns by checking for antipatterns the critic
fails to detect as well as correct code flagged as antipatterns.

As the project proceeds, we plan to develop and expand
instructional materials to include pattern and antipattern
specific material. We will create materials and training for
on-boarding instructional staff. And we will assess learning
outcomes on the use of our MATLAB Critic in the first year
engineering courses.

A final point of distinction between the MATLAB Critic we
are developing and MATLAB-TA is our plan to conduct a
thorough evaluate MATLAB Critic with a large number of
students. Our MATLAB Critic will be deployed for beta-
testing in the classroom in Fall 2022 with broadening de-
ployment planned for each following semester.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. 2142309. The authors
wish to thank the following undergraduate students for their
work on this project: Joe Teahen, Ricardo Nunez Cuesta,
Katie Ulinski, Laura Albrant, and Daniel Masker.

8. REFERENCES

[1] C. Alexander. A pattern language: towns, buildings,
construction. Oxford university press, 1977.

[2] N. M. Ali, J. Hosking, and J. Grundy. A taxonomy
and mapping of computer-based critiquing tools.
IEEE Transactions on Software Engineering,
39(11):1494–1520, 2013.

[3] T. Ball. The concept of dynamic analysis. In Software
Engineering—ESEC/FSE’99, pages 216–234. Springer,
1999.

[4] L. Briand, S. Nejati, M. Sabetzadeh, and D. Bianculli.
Testing the untestable: model testing of complex
software-intensive systems. In Proceedings of the 38th
international conference on software engineering
companion, pages 789–792, 2016.

[5] C. Brown, R. Pastel, B. Siever, and J. Earnest. Jug: a
junit generation, time complexity analysis and
reporting tool to streamline grading. In Proceedings of
the 17th ACM annual conference on Innovation and
Technology in Computer Science Education, pages
99–104, 2012.

[6] C. D. Brown. An experience-driven pedagogy for the
instruction of software testing in computer science.
PhD thesis, Michigan Technological University, 2013.

[7] J. Eaton and Et. Al. GNU Octave.
https://octave.org/, 2022.

[8] S. H. Edwards and M. A. Perez-Quinones. Web-cat:
automatically grading programming assignments. In
Proceedings of the 13th annual conference on
Innovation and technology in computer science
education, pages 328–328, 2008.

[9] M. Fokaefs, N. Tsantalis, E. Stroulia, and
A. Chatzigeorgiou. Jdeodorant: Identification and
application of extract class refactorings. Proceeding of
the 33rd international conference on Software
engineering - ICSE ’11, 2011.

[10] R. C. Martin. Smells and heuristics. In Clean Code: A
Handbook of Agile Software Craftsmanship, chapter 17.
Prentice Hall, 2009.

[11] Mathworks, Inc. Matlab, 2021.

[12] L. Qiu and C. Riesbeck. An incremental model for
developing educational critiquing systems: experiences
with the java critiquer. Journal of Interactive Learning
Research, 19(1):119–145, 2008.

[13] P. Runeson. A survey of unit testing practices. IEEE
software, 23(4):22–29, 2006.

[14] G. Travassos, F. Shull, M. Fredericks, and V. R.
Basili. Detecting defects in object-oriented designs:
using reading techniques to increase software quality.
ACM sigplan notices, 34(10):47–56, 1999.

[15] L. C. Ureel and C. Wallace. Webta: Automated
iterative critique of student programming assignments.
In 2015 IEEE Frontiers in Education Conference
(FIE), pages 1–9. IEEE, 2015.

[16] L. C. Ureel and C. R. Wallace. Webta: Online code
critique and assignment feedback. In Proceedings of
the 49th ACM Technical Symposium on Computer
Science Education, pages 1111–1111, 2018.

[17] L. C. Ureel II. Critiquing Antipatterns In Novice Code.
PhD thesis, Michigan Technological University,
Houghton, MI, Aug 2020.

[18] L. C. Ureel II. Integrating a colony of code critiquers

into webta. In Seventh SPLICE Workshop at SIGCSE
2021 “CS Education Infrastructure for All III: From
Ideas to Practice”, 2021.

[19] L. C. Ureel II and C. Wallace. Automated critique of
early programming antipatterns. In Proceedings of the
50th ACM Technical Symposium on Computer Science
Education, pages 738–744, 2019.

[20] A. Vihavainen, M. Luukkainen, and M. Pärtel. Test
my code: An automatic assessment service for the
extreme apprenticeship method. In 2nd International
Workshop on Evidence-based Technology Enhanced
Learning, pages 109–116. Springer, 2013.

[21] A. Vihavainen, T. Vikberg, M. Luukkainen, and
M. Pärtel. Scaffolding students’ learning using Test
My Code. In Proceedings of the 18th ACM Conference
on Innovation and Technology in Computer Science
Education, pages 117–122, 2013.

[22] M. Walther, L. Ureel, II, and C. Wallace. A prototype
matlab code critiquer. In Proceedings of the 2019
ACM Conference on innovation and technology in
computer science education, ITiCSE ’19, pages
325–325. ACM, 2019.

[23] M. L. Walther. Matlabta: A style critiquer for novice
engineering students. Master’s thesis, Michigan
Technological University, Houghton, MI, 2020.

